14-ACRE RIVER TRAIL DEVELOPMENT
PEORIA COUNTY, ILLINOIS

PHASE I CULTURAL RESOURCE SURVEY

May 2016

prepared for
City of Peoria
419 Fulton Street, Suite 207
Peoria, Illinois 61601

Prairie Archaeology & Research
P.O. Box 5603 • Springfield, Illinois 62705-5603 • Phone 217.544.4881
www.prairiearchaeology.com
www.prairiearch.com
Archaeological Survey Short Report
14-acre River Trail Development, Peoria County, Illinois
IHHA Log #s: 017011416, 013012116

LOCATION INFORMATION AND SURVEY CONDITIONS

County: Peoria

Quadrangle: Peoria East, IL 7.5’

Project Type/Title: Phase I Cultural Resource Survey of the Conversion and Replacement Parcels (totaling 14-acres) Associated with the River Trail Development in Peoria, Illinois.

Funding and/or Permitting Federal/State Agency: Illinois Department of Natural Resources CERP Program.

Township: 8 North Range: 8 East Section(s): 3 Principal Meridian: 4th

Project Description: A phase I cultural resource investigation of two parcels totaling 14-acre development located adjacent to Lake Peoria in the City of Peoria County, Illinois. The project was conducted for City of Peoria, Illinois (Figures 1 & 2).

Topography: Floodplain Drainage: Illinois River

Soils: Sparta-Dickinson-Onarga (United States Department of Agriculture 2016).

Land Use/Ground Cover and Visibility: The project area was comprised of two parcels. Both parcels had been subjected to heavy land modification in the last century. The Conversion Site in the southwest parcel (approximately 5.84-acres) had historically been utilized as a rail yard for the Chicago, Rock Island, and Pacific Railroad. Modern utilization consists of a park and trail. The Replacement Site in the northeast parcel (approximately 8.14-acres) is comprised of a boat club and a large spoil pile of what was once the Hawkeye Rubber Manufacturing Company.

Survey Limitations: Deep fill deposition and historic modification required coring and geomorphological investigations.

ARCHAEOLOGICAL AND HISTORICAL INFORMATION

Historical Plats/Atlases/Sources:
1846 United States General Land Office Survey Plat (T8N, R8E, 4th P. M.)
1861 Map of Peoria County, Illinois (Daniel B. Allen)
1873 Atlas Map of Peoria County, Illinois (A. T. Andreas)
1896 Standard Atlas of Peoria City and County, Illinois (Melchior Huebinger)
1905 Peoria, Illinois 15’ USGS Topographic Map
1911 Map of Peoria County, Illinois (Peoria Journal)
1923 Atlas of Peoria County, Illinois (Huebinger, H.)
1930? Plat Book of Peoria County, Illinois (W.W. Hixson & Co.)

The 1846 GLOS plat shows the southwest parcel situated within prairie and the northwest parcel within the lake (Figure 3). This source does not indicate any cultural landmarks (such as trails, fords, or roads) within the project boundaries.

The Illinois Public Domain Land Tract Database indicates that the federal government sold the 151.44-acre parcel associated with southwest parcel to Augusta Langworthy on June 26, 1833 for the sum of $1.25 per acre (Illinois State Archives 2015). This source also indicates that the federal
Figure 1. Location of the project vicinity within Peoria County, Illinois.
Figure 2. Location of the project area and site 11P844, Peoria County, Illinois (1979 Peoria East, IL 7.5' USGS Topographic Map).
Figure 3. Location of the project area on historical atlases from 1846 to 1896.
government sold the 28.31-acre parcel associated with northeast parcel to John Burket on May 22, 1835 for the sum of $1.25 per acre.

Figures 3 and 4 illustrate the changing landscape with regards to the shoreline of Lake Peoria as well as the land-use of the parcels from 1846 to 1930 (Allen 1861, Andreas 1873, Huebinger 1896, Hendrickson & Richardson 1904, United States Geological Survey 1905, Peoria Journal 1911). The 1939 aerial photograph for Peoria County illustrates the Chicago Rock Island and Pacific Railroad operations in the southwest parcel (Figure 4).

Previous Surveys and Reported Sites: A review of the ISM/IDNR Illinois Inventory of Archaeological Sites and HARGIS database indicated two previous surveys conducted within the project limits. An archaeological survey for a multi-use trail project requiring land surface modification was conducted in 1989 by Archaeological Consultants. Archaeological monitoring for sewer and bridge improvements in downtown Peoria was conducted in 1993 (Cabak and Groover 1993) for the City of Peoria by the Midwestern Archaeological Research Center (Rohrbaugh 1989). No NRHP-eligible properties were indicated within the project boundaries for either survey. Both surveys identified a significant amount of fill deposits dating to the late 19th and 20th centuries within the vicinity of the current project. However, neither reports detail specific information regarding the depth or nature of fill deposits.

Regional Archaeologists Contacted: none

Investigation Techniques: Visual reconnaissance, examination of historical maps and resources, and examination of geotechnical and geologic soil boring logs.

Collection Techniques: n/a

Sites/Find Spots Located: 11P844 (Figure 1 and Appendix E - ISM Site Form)

Cultural Material: none

Curated at: n/a

Area Surveyed: Approximately 14-acres (56,575 m²).

Field Time Expended: 8 person hours

RESULTS OF INVESTIGATIONS AND RECOMMENDATIONS

An intensive cultural resource survey of the proposed 14-acre River Trail Development in Peoria, Illinois was conducted on February 18, 2015. The project area was comprised of two parcels. Both parcels had been subjected to heavy land modification in the last century. The Conversion Site in the southwest parcel (approximately 5.84-acres) had historically been utilized as a rail yard for the Chicago Rock Island and Pacific Railroad. Modern utilization consists of a park and trail. The Replacement Site in the northeast parcel (approximately 8.14-acres) is comprised of a boat club and a large spoil pile of what was once the Hawkeye Rubber Manufacturing Company. Due to the heavy disturbance and land modification of the parcels, the project limits were visually inspected. Geomorphological investigations were conducted to assess the landform development and evaluate the potential for the presence of buried intact soils (Appendix C — Geomorphological Report).

The investigation of the subject parcel also included an examination of historical maps and atlases pertinent to the subject property, a computer database search of the archaeological site files maintained by the Illinois State Museum, and a review of the National Register of Historic Places (NRHP) maintained by the Illinois Historic Preservation Agency. The subject parcel is situated within floodplain portions of the Illinois River.

No reported or known archaeological sites or properties listed on the NRHP are reported within the project area.
Figure 4. Location of the project area on historical atlases from 1905 to 1930 and aerial photograph from 1939.

Historical Context of the Conversion Site

Based on review of historical maps and atlases shows that the Conversion site was occupied by the maintenance and repair yard of the Chicago, Rock Island & Pacific Railroad from circa 1885 to the 1980s when the property was redeveloped into a public park. The absence of the extensive rail trackage system,
the presence of rail ballast debris, or foundations remnants of railroad support structures suggest that extensive land modification occurred during the demolition and conversion activities. Only two structures associated with the CRI&P yard are extant and include a circa late 1960s combined office, watchtower, and maintenance building and the roundhouse turntable that appears to date to at least 1891 (Appendix A - Photographs and Appendix B - Sanborn Maps).

Peoria’s first planned rail line entering the city was the Peoria and Warsaw Railroad, a line incorporated in 1838 but never laid. The first constructed line serving Peoria was the Peoria and Bureau Valley Railroad (P&BV) completed in some sixteen years later connecting Peoria with 47-miles of track to Bureau Junction following a route along the Illinois River with depots located in Snatchwine (Putnam), Henry, Sparland, Chillicothe, Rome (Coughlin), Mossville, and Sankoty. Almost as soon as the rail was completed in February of 1854, the P&BV railroad was leased in perpetuity to Chicago and Rock Island Railroad (C&RI) in April of 1854. The first passenger train began serving Peoria on November 9, 1854 along the C&RI rail line.

Over the course of the second half of the 19th century, fifteen railroads were soon located in Peoria (May 1968). In 1882 Union Station opened at the foot of State Street by a Peoria and Pekin Union Railroad (later acquired by the Union Pacific Railroad). In 1899, the Chicago and Rock Island Railroad depot was built in Peoria along Water Street. When it was constructed, the depot was considered one of the finest and most utilized stations in the Midwest (Schafer 1996:76). The Rock Island Depot is a two-story brick structure. A freight house was built adjacent to the depot in the first decade of the 20th century. The opening of the Chicago, Rock Island & Pacific depot was a celebrated and well-attended event in Peoria. The station's clock tower was removed in 1939. The building was listed on the U.S. National Register of Historic Places in 1978.

By the turn of the 20th century, nearly 120 trains departed Peoria on a daily basis (May 1968). Trains reached nearly every city in the region and as far away as New York and Denver. Passenger trains experienced a continued decline in the first decades of the 20th century and, by 1923, the number of passenger trains had dropped to eighty trains daily in and out of Peoria. The Rock Island Rocket ran to Chicago and back to Peoria in only two hours and forty-five minutes when it was first scheduled. However, as track maintenance and upkeep declined, the Rocket’s speed fell, and its run lengthened into four hours. Soon the number of passengers also fell. The last Rocket left the CRI&P depot in 1967 and the building was abandoned in 1968 (Schafer 1996:77).

The Conversion Site was formally occupied by the Chicago, Rock Island & Pacific Railroad maintenance and repair yard. Support facility such as the CRI&P yard typically included a variety of buildings and structures such as watchman’s shanties, tool houses, sleeping quarters/club houses for rail employees, signal towers, car sheds and car-cleaning yards, ice houses, oil storage and mixing houses, water stations, coaling loading stations for locomotives, and roundhouses. Sanborn Fire Insurance maps (included in Appendix B) show the variety of structures and the complexity of the CRI&P maintenance yard beginning in the late 19th century and how the use of the facility diminished during the 20th century. With the exception of combined Watchman tower and maintenance building constructed in 1967 and the remnant of the roundhouse turn-table recorded as archaeological site 11P844 (both documented in Appendix A - Photographs), all of these building types and array of trackage of the former yard are no longer present and extant.

The turn-table (11P844) has been recorded as an archaeological resource (Figure 1 and Appendix E - ISM Site Form). This resource consists of a circa 1900 concrete basin with a moveable metal superstructure designed for turning railroad rolling stock (such as cars and locomotives) in order to reverse engine direction or to feed the car into repair stalls. Based on the use of concrete, the turntable appears to date to the early 20th century. According to the Sanborn maps, the turntable was used through the mid 20th century. Turntables are relatively common structures associated with railroad yards in Illinois. According to a survey of the Railroad Station Historical Society, Inc. (www.rshs.org), there are twelve existing roundhouse and turntable structures in Illinois. Most of these are within existing rail yards and are
included within complexes of associated rail structures. Similar turntables are found in Bellwood, Cicero, Melrose Park, Bensenville, Amboy (Jackson County), Villa Grove (Douglas County), Moline, Freeport, Rossview (Vermillion County), and two in Joliet (ibid) (IHHA HARGIS Database; www.rshs.org). The CR&P turntable located within the current project area includes none of the connecting rail track or associated rail maintenance structures. With regard to historical significance or architectural uniqueness, the turntable lacks its original and function context as a railroad maintenance facility and is not a particularly good or rare example of a railroad turntable commonly used in region. The structure is neither unique nor significant with regards to historical or engineering design, construction, or context. The turntable is not eligible for listing on the National Register of Historic Places.

Historical Context of the Replacement Site

The current uses of the Replacement Site consist of a marina and support facilities on the north and a graded and vacant parcel that was occupied by a one-story rubber manufacturing, packaging, and shipping facility constructed in the mid 20th century and demolished sometime after 2001.

The parcel is located at the foot of Spring Street adjacent to Lake Peoria. The earliest General Land Office (GLO) map dated 1846 show the parcel within Lake Peoria. The Replacement parcel remains within Lake Peoria during the 19th century and (on some maps) opening decades of the 20th century. The 1896 map indicates that an "ice house" occupied the southern portion of Replacement parcel. Based on later maps, the ice house was removed to make way for the structure associated with the rubber manufacturing building. By the 1920s, portions of Lake Peoria were reclaimed by the placement of fill in the floodway. By the 1930s, Spring Street was extended and several small buildings are shown in project area. Following the 1940s, fill material continued to be placed within the lake on the north of the subject parcel to develop a bay and marina. An extant small framed structure that appears to date to the mid 20th century is present within marina property (see photographs in Appendix A - Photographs). The marina continues to be used currently. The portion of the parcel south of Spring Street has been graded and several soil spoil piles are present (Appendix A - Photographs).

Geomorphological Assessment

As shown in the Geomorphology report (Appendix C), a considerable amount of fill has been placed within the boundaries of both the Conversion and Replacement properties. Fill deposits range from 6 to 22 feet below the existing grade. Soil logs show a conglomerate of fill deposits with inclusions of concrete, brick, and cinder deposits. Further, coring has shown that the Conversion parcel has been significantly leveled and graded so that the upper soil horizon (Ap-A-AB-Bp) has been removed historically. Historical landscape modifications to develop railroad and manufacturing facilities and a marina has obscured and obliterated the native soils present prior to middle to late 19th century. Further, building demolition and land clearing conducted relatively recently has further compromised the integrity of the parcels and their likelihood to contain significant buried archaeological or historical deposits.

The Replacement parcels are situated on a spit of land that has been developing as a result of sediment depositing from the outfall of an unnamed creek as it merges with the Illinois River. The entire project area is either a recent landscape in the modern floodplain of the river that has been artificially built in the last 75 years or has been significantly remodeled and contoured repeatedly in the last 150 years of urban development and use. The Replacement parcel is underlain by fill as thick as 4.88 m. in some areas and no soils formed in till was encountered.

In sum, historic modifications of both parcels circumvents any possibility of deeply buried historic or prehistoric resources being present. The potential for buried archaeological deposits in primary context is low due to truncation or destruction by modern activities. No further geomorphological examination of either parcel is necessary or appropriate considering the historical use and urban development.
Summary Statement

Field investigations and a review of the pertinent archival and background information and field investigations conducted by Prairie Archaeology & Research for the proposed Conversion and Replacement parcels (totaling 14-acres) associated with River Trail Development project in Peoria County, Illinois, did identify a single archaeological and structural resource specifically the railroad turntable designated as archaeological site 11P844 within the boundaries of the project area. The watchman tower and combined office and garage building is less than 50 years old and is a common building type that offers no unique architectural features. Further, the building as a railroad facility lacks the context of a rail yard and maintenance necessary for potential historical significance. Similarly, a extant small framed residential structure that appears to date to the mid 20th century is present within marina property. This building is a common structure type and is not historically or architecturally significant. All standing resources within the APE are not considered significant cultural, historical, or archaeological sites or structures that meet or may meet the criteria for inclusion on the National Register of Historic Places. The turntable, specifically, lacks its original historical context as part of a railroad maintenance complex and it is a relatively commonplace feature of rail yards in the region and throughout Illinois. Additionally, a review of historical maps and resources, geomorphological investigation, and an examination of geotechnical boring logs have determined that the parcels fail to contain the potential for deeply buried historical or archaeological resources that would merit further examination. In sum, it is our opinion that the Area of Potential Effect (APE) does not hold evidence of significant historical structures or archaeological resources that may be adversely impacted by direct or indirect activities related to the project. No additional archaeological, historical, or cultural resources investigations are proposed or recommended for this project. Project clearance is recommended.

- Phase I Archaeological Reconnaissance Has Located No Archaeological Materials; Project Clearance Is Recommended.

✓ - Phase I Archaeological Reconnaissance Has Located Archaeological Materials: Site(s) Does (Do) Not Meet Requirements for National Register Eligibility; Project Clearance Is Recommended.

- Phase I Archaeological Reconnaissance Has Located Archaeological Materials: Site(s) May Meet Requirements for National Register Eligibility; Phase II Testing Is Recommended.

- Phase II Archaeological Investigations Have Indicated That Site(s) Does (Do) Not Meet Requirements for National Register Eligibility; Project Clearance Is Recommended.

- Phase II Archaeological Investigations Have Indicated That Site(s) Meet Requirements for National Register Eligibility; Formal Report is Pending and a Determination of Eligibility is Recommended.

Archaeological Contractor Information
Prairie Archaeology & Research
P.O. Box 5603, Springfield, IL 62705-5603
ph. (217) 544-4881

Surveyor(s): Joseph Craig and Jason Rein
Survey Date(s): Spring 2016
Report Completed By: Joseph Craig and Jason Rein
Report Date: May 25, 2015

Submitted By: JOSEPH CRAIG, PRESIDENT
Owner/Agent/Agency To Whom SHPO Comments Should Be Mailed

Agent: Mr. Chris Setti
City of Peoria
419 Fulton Street, Suite 207
Peoria, Illinois 61601
ph. (309) 494-8618

Agency:

Review Comments:

Attachment Check List
✓ 1. Relevant Portion of USGS 7.5' Topographic Quadrangle Map(s) showing Project Location and Recorded Sites
✓ 2. Project Map(s) depicting Survey Limits and, when Applicable, Concentrations of Cultural Materials
✓ 3. Site Form(s)
✓ 4. All Relevant Project Correspondence
✓ 5. Additional Information Sheets As Necessary

References:
Allen, Daniel B.

Andreas, A. T.

Cabak, Melanie A. and Mark D. Groover

Huebinger, H.

Huebinger, Melchior

Illinois State Archives
1846 Federal Township Plats of Illinois, T8N R8E 4th P. M.
(http://landplats.ilsos.net/)
2016 Illinois Public Domain Land Tract Sales Database.
(http://www.cyberdriveillinois.com)

Illinois State Geological Survey
2016 Illinois Historical Aerial Photographs 1937 - 1947
(http://isgs.illinois.edu)

May, George
Peoria Journal

References (continued):

Rohrbaugh, Charles

Schafer, Mike

WWW.rrshs.org

United States Department of Agriculture

United States Geological Survey
1905 Peoria, IL 15 Minute Topographic Map.
1979 Peoria East, IL 7.5 Minute Topographic Map.

W.W. Hixson & Co.
G
CRI&P Office/Watchtower/Maintenance Building

H
CRI&P Roundhouse Turntable
APPENDIX C: Geomorphology Report

By
Michael F. Kolb, Ph.D.
Strata Morph Geoexploration, Inc

Report of Investigation No. 268

May 2016

Prepared for
Prairie Archaeology & Research, Ltd.
Springfield, Illinois
Introduction

The purpose of the geomorphological investigation is to determine the potential for buried archaeological deposits in two project areas: The Conversion Parcel and the Replacement Parcel. Both parcels are part of the Peoria River Trail Development project. Potential is a qualitative measure of the likelihood that a particular geologic environment will contain archaeological deposits in primary context. Three major geomorphic criteria are used when assigning a level of potential: (1) age of the deposits, (2) depositional environment, and (3) post-depositional modifications. The investigation can only determine if there is or is not potential for buried archaeological deposits. In some stratigraphic settings field data can be used to address specific aspects of archaeological deposit integrity such as stratigraphically separated occupations and artifact and ecofact preservation. A soil-stratigraphic framework was constructed using data from cores as a contextual tool for interpreting the landscape history of the project area. Cores were extracted using a truck-mounted Geoprobe. Background information from existing literature sources (publications and technical reports), topographic maps, and aerial photographs were used to supplement and aid in interpreting the stratigraphy in the project area. Additional data on the early historic landscape were gleaned from historic accounts already identified in the archaeological literature review.

Landforms

The landform where the project area is located is mapped as an erosional strath (Hajic 2000). The map colors used for terraces and erosional straths are difficult to distinguish on the map copies but the presence of distinctive stepped topography, especially north of the project area, indicates the landform in the project area is an erosional strath (Figure 1). The strath (also referred to as a strath terrace) extends southwest to the mouth of Kickapoo Creek and north to the Highway 150 Bridge. The upland to the northwest is the Bloomington Moraine (Willman and Frye 1970). The boundary between the strath and the upland is a steep scarp that parallels Glen Oak Avenue. To the southeast the strath borders Lake Peoria/Illinois River. The strath was created by the catastrophic flood flow of the Kankakee Torrent about 19,000 cal years BP (Curry et al. 2014). The top of the strath exposed
Figure 1. Location of the project area parcels plotted on a portion of the 1:24,000 scale Peoria East Quadrangle.
by the floods is an erosional surface that is either cut into (1) pre-existing outwash sediment or (2) sediment (bedload) deposited by the Kankakee floods. These sandy and gravelly deposits were then capped with loess, colluvium, and possibly some waning flow fluvial deposits. The geomorphic surface created by the floods has been exposed to weathering, eolian sedimentation, and hillslope processes for approximately the last 18,000 – 19,000 years.

Soils

In the project area and generally southeast and east of Highway 24 (Adams Street) soils are mapped as urban land (USDA n.d.). Northwest and west of Highway 24 and north of the project area up to the Highway 150 Bridge the Crescent and Warsaw series soils are mapped on the strath surface with minor areas of Strawn series soil (Table 1). The Crescent and Warsaw series soils are formed in thin upper strata of loess mixed with colluvium (Surficial Deposits) over sand or gravelly sand outwash. They are both mollisols and therefore likely formed under grassland vegetation accounting for their thick A-AB or A-BA surface horizon sequence.

Table 1. Soils mapped in and around the project area.

<table>
<thead>
<tr>
<th>Series</th>
<th>Parent Material</th>
<th>Texture</th>
<th>Master Horizon Sequence (depth to base of horizon cm)</th>
<th>Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crescent</td>
<td>loess&colluvium/outwash</td>
<td>loam/clay loam/loam/sand</td>
<td>A(38)-AB(46)-Bt(117)-C</td>
<td>typic argiudoll</td>
</tr>
<tr>
<td>Warsaw</td>
<td>loess&colluvium/outwash</td>
<td>loam & sandy clay loam/gravelly c. sand</td>
<td>A(36)-BA(43)-Bt(89)-C</td>
<td>typic argiudoll</td>
</tr>
<tr>
<td>Strawn</td>
<td>loess&colluvium</td>
<td>loam and clay loam</td>
<td>Ap(18)-Bt(56)-C</td>
<td>typic hapludalf</td>
</tr>
</tbody>
</table>

Methods

A truck mounted Geoprobe® was used to extract 5 cm (2 inch) diameter cores where truck access was possible. Core samples were described in the field using standard systems from soils (Schoeneberger et al. 1998, Soil Survey Staff 1975) and geology (Collinson and Thompson 1982, Folk 1974) and returned to the borehole.

Results

Deposits encountered in the project area are defined as follows:
Bedrock: Bedded sandstone encountered in one core in the Replacement Parcel

Outwash: Generally coarse and very coarse sand with granules and fine pebbles; occasionally with small percentages of finer sand and silt. The consistent particle-size distribution and sorting may indicate these are mega-flood fluvial outwash sediments deposited and eroded by outburst flood in the Illinois valley.

Till: Silty clay loam to silt loam diamicton encountered in one core in the Replacement Parcel

Surficial Deposits: Loess, colluvium, and waning flow fluvial deposits altered and mixed by pedogenic processes to produce a silty clay loam, loam or clay loam diamicton cap at the landform surface.

Historic Fill: Two major types (1) anthropogenic/mixed source fill, and (2) natural source fill. The first type consists of cinder, sand, and gravel with minor amounts of glass, metal, ceramic, brick, and soil. The second type is soil that has been used as fill. It contains a few historic artifacts such as cinder.

Definitions of a few of the terms used in the text are as follows: The solum is the upper part of the soil where the A, E and B horizons formed from the same landscape surface. An erosional surface is a landscape surface created by an erosional event such as a flood. Human activity can create pseudo-erosional surfaces by mechanically truncating the soil. These are referred to as truncated surfaces. In stratigraphic analysis the two are similar in that they both mark a break in the stratigraphic record.

Geotechnical Borings

Ten geotechnical borings were completed in 2011. Logs for 5 of the 10 borings are available and were examined to provide additional data on the thickness of the fill and the nature of the subfill deposits. Although detailed pedogenic soil descriptions are lacking the deposit stratigraphy is the same as in the Geoprobe cores: fill over sandy and/or gravelly sand deposits (see Figure 2 for location and fill thickness).

Conversion Parcel: Stratigraphic Cross-Section 1 (Cores 1-5)

Cross-section 1 extends form near the western edge of the project area to just beyond the eastern edge of the project area (Figure 2). Stratigraphy in Cores 1-4 consist of fill ranging is thickness from 0.9 to 1.8 m thick over a truncated soil formed in outwash or, in the case of Core 4, in surficial deposits, over outwash (Figure 3, Appendix A). The lower
Figure 2. Locations of the Geoprobe cores, engineering borings, and stratigraphic cross-sections at the Conversion and Replacement parcels plotted on an aerial photograph. Numbers in the colored boxes are depths to the base of the fill from the modern surface.
Figure 3. Stratigraphic cross-section 1 at the Conversion Parcel (see Figure 2 for cross-section location).
2Bwb horizon is present beneath the fill in Core 1. The entire solum is missing in Cores 2 and 3 where the fill overlies a 2C horizon or a 2BCb horizon formed in the outwash. In Core 4 a portion of the Bwb horizon is present. It is formed in surficial deposits. A second 2B horizon, referred to as a beta B, is present deeper in the sequence. These are common in sandy soils. Diesel fuel odor and sheen is present in Core 3 in both the fill and the underlying outwash.

Core 5 is at the eastern end of the cross-section just beyond the eastern edge of the project boundary. It was taken to determine the location of the strath scarp that descends to the floodplain. Stratigraphy consists of anthropogenic mixed source fill over natural source fill to 4.88 m below the surface (Figure 3, Appendix A). The natural source fill consists of soil from the upper solum of the soil upslope that was likely pushed off the edge of the landform to extend the strath surface to the east. This is, in part, is the process that truncated the soil upslope. It is a typical example of the cut and fill process used by engineers for leveling a surface to a pre-determined grade. Below 4.18 m the sediment may be in situ Surficial Deposits that mark a truncated soil surface although it is not clear.

Potential for buried archaeological deposits along Stratigraphic Cross-Section 1 is generally low because the soil marking the landscape below the fill is truncated. If the Core 5 sequence is all fill then the nature of the sub fill deposits is not known so the potential is unknown, although this core is outside the project area boundary.

Conversion Parcel: Cores 6 and 7

Cores 6 and 7 are south of the cross-section 1 at the south end of the project area (Figure 2). Stratigraphy in Core 6 consists of 1.73 m of anthropogenic mixed source fill over a truncated soil with a 2C horizon formed in outwash (Appendix A). In Core 7 the stratigraphy consists of 1.30 m of anthropogenic mixed source fill over a truncated soil with a 2Bw horizon formed in the surficial deposits over a 2BC and 2C horizons formed in outwash. Potential for buried archaeological deposits in primary contexts is low because the soil marking the strath surface is truncated.

Conversion Parcel: Cores 8 and 9

Core 8 and 9 are south of the existing railroad turntable (Figure 2). Stratigraphy in Core 8 consists of 2.00 m of anthropogenic mixed source fill over a truncated soil with a
2C1-2C2-2C3 horizon sequence formed in outwash (Appendix A). Core 9 stratigraphy consists of 1.54 m of anthropogenic mixed source fill over a silty clay loam diamicton that may be part of the lower solum and/or C horizon formed in surficial deposits or fill. Although more data would be preferable to determine if the diamicton is fill or in situ surficial deposits even if they are in situ there is no upper solum present so the soil would be truncated. Core refusal was encountered at a depth of 3.80 m. Potential for buried archaeological deposits in primary context is low because the soil marking the strath surface is truncated.

Conversion Parcel: Stratigraphic Cross-Section 2 (Cores 10-14)

Stratigraphic Cross-Section 2 is at the northern end of the project area (Figure 2). It consists of Cores 11-14. Core 10 is located very close to Core 13, has identical stratigraphy, and is not included in the cross-section. Core 14 is along the western border of the project area. Stratigraphy consists of 0.75 m of anthropogenic mixed source fill over a truncated soil with a 2C horizon formed in outwash (Figure 4, Appendix A). Cores 10 and 13 penetrated 1.80 and 1.69 m of anthropogenic mixed source fill respectively before core refusal at a solid object. The Sanborn maps show this area as the track apron for the railroad turntable and mention it was constructed of brick (see archaeology report). In situ brick would be very difficult to core through with the Geoprobe. Core 11 is within a few meters of the turntable. Stratigraphy consists of 0.55 m of fill over a 2ACb horizon formed in a gravel lag, over a 2BC-2C1-2C2 horizon sequence formed in outwash (Appendix A). Core 12 is at the east end of the transect (Figure 4). Stratigraphy consist of anthropogenic mixed source fill over natural source fill to a depth of 1.31 m over a truncated soil with a 2C1 and 2C2 horizon sequence formed in outwash. The soil in Cores 11, 12 and 14 are all truncated and have low potential for buried archaeological deposits. Cores 10 and 13 met refusal at 1.80 m and 1.69 m respectively in an area where the brick turntable apron was located. The modern surface slope ascends to the parking lot from the turntable so does not mimic the level grade necessary for operation of the turntable. Given the truncated soil in Core 11 next to the turntable and that the apron is up the paleoslope of the turntable then it is assumed that the soil beneath the apron bricks is also truncated and as such has low potential for buried archaeological deposits.
Replacement Parcel (Cores 15-19)

The Replacement Parcel consists of the Peoria Boat Club marina and a plot of open land with excavations and fill piles on the surface (Figures 1 and 2). Cores 15-19 were extracted in the Replacement Parcel (Figure 2). Stratigraphy in Core 15 consists of 3.26 m of anthropogenic mixed fill over silt loam and silty clay loam diamicton to a depth of 4.88 m (Appendix A). The diamicton is interpreted as a till that was either exposed along the valley/channel margin by erosion or (2) it was exposed by construction activity in the area prior to fill emplacement. In either case the potential for archaeological deposits in primary context is low.

Core 16 is on the same disturbed surface to the northwest of Core 15 (Figure 2). Stratigraphy consists of sandy outwash source fill with scattered artifacts to a depth of at least 3.00 m (Appendix A). The boring was terminated due to constant hole collapse in the loose sand fill prior to reaching the sub-fill soil.

Core 17 is located on the outside of the marina fence just west of the marina clubhouse (Figure 2). Stratigraphy consists of mixed anthropogenic fill to a depth of 3.96 m (Appendix A). Core was terminated due to borehole collapse.

Core 18 is inside the marina along the western fence line (Figure 2). Stratigraphy consists of mixed anthropogenic fill to a depth of 2.18 m over weathered siltstone bedrock to refusal at a depth of 2.80 m (Appendix A). The friable nature of the rock makes it unlikely it was dumped in with the fill and not be broken up although it is possible.

Core 19 is also along the western fence of the marina (Figure 2). Stratigraphy consists of mixed anthropogenic fill to a depth of 4.88 m (Appendix A). Below 4 m core recovery is very low because of loose fill and possible voids.

Potential for deeply buried archaeological deposits in primary context is low in Cores 15 and 18 where the cores penetrated non-fill deposits (till and bedrock) with no soil development. The buried landscape surface was truncated/eroded by either natural processes along the strath scarp or by anthropogenic modification prior to fill emplacement. The fill is thicker in the other three cores indicating the fill was emplaced.
over a lower landscape surface. The nature of that surface is not known for certain but
given the eroded till near the lakeward edge of the project area it may well be eroded till, or
even bedrock, exposed originally by the Kankakee Flood and kept relatively free of
sediment by water level fluctuation in Lake Peoria or even exhumed when the water level
rose after the lock and dam system was put in place in the 1930’s.

Discussion

Historic fill forms the surface deposits at both the Conversion Parcel and the
Replacement Parcels. Using the landscape morphology, soils and landforms mapped in the
area, and geological inference, it can be hypothesized that prior to fill emplacement the
Conversion Parcel was an erosional strath that formed during the Kankakee Torrent
19,000 years ago. Given the age and depositional environment potential for deeply buried
archeological deposits not associated with the strath surface or below the outwash is nil.
Since 19,000 years ago the surface was modified by loess deposition and colluviation, and a
long period of soil formation. The result is a well-developed soil formed in silty clay loam
diamicton Surficial Deposits over gravelly very coarse sand Outwash Deposits. If fill was
emplaced without modification of the strath surface the well-developed intact soil should
be present just below the fill. Coring in the Conversion Parcel indicates this is not the case.
The strath surface was leveled and graded for construction of the rail yard and possibly
further modified by demolition of the rail yard. There is evidence this was accomplished, in
part, by cutting into the higher parts of the strath and filling the low areas along the eastern
strath margin before fill was used raise the surface to grade. This cut and fill processes
would have resulted in the truncated soils observed over much of the Conversion Parcel
and the fills consisting of the upper solum soil in the low off the west edge of the strath.
Artifacts in non-feature contexts resulting from occupations on the strath surface would be
contained in the upper solum. A rough comparison with the type Warsaw and Cresent
series soils indicates at least 0.7 m of soil was removed and possibly much more indicating
the potential for artifacts in primary context in the upper solum is very low. Features, if
present, would also be truncated or completely destroyed. Because the soil is severely
truncated the potential for buried archaeological deposits in primary context is low.
The Replacement Parcel may be east (riverward) of the high strath depending on the nature of the slope: steep scarp or low gradient. Historic records and local oral tradition indicates it is made land built out into the post-dam Lake Peoria in the early 1940s. Three of the 5 cores did not penetrate the fill that is as thick as 4.88 m. Two cores penetrated the fill where till or bedrock was encountered. No soil is formed in the till or bedrock so it is interpreted as having a truncated surface. The truncation may be the result of mechanical modification prior to fill emplacement or erosion along the edge of the scarp. Potential for buried archaeological deposits is low due to the known truncation of the subfill soil in two cores. The other cores did not penetrate the fill so the most that can be said about those areas is that they are low and wet.
References Cited

Collinson, J. D. and D. B. Thompson

Curry, Brandon, B., Edwin R. Hajic, James A. Clark, Kevin M. Befus, Jennifer E. Carrell and
Steven E. Brown
2014 The Kankakee Torrent and other large meltwater flooding events during the last
glacialtion, Illinois, USA. Quaternary Science Reviews 90:22-36.

Folk, Robert F

Hajic, Edwin R.

Schoeneberger, P. J., D. A. Wysocki, E. C. Benham and W. D. Broderson
Center, Natural Resource Conservation Service, USDA, Lincoln, Nebraska.

Soil Survey Staff

USDA

Willman, H. B. and John C. Frye
APPENDIX A
CORE LOGS

Core 1: Conversion Parcel

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0-140 | F | *Anthropogenic Mixed Source Fill*
Fill, coal, cinder; very abrupt boundary. |
| 140-160 | Bw | *Outwash*
Very dark grayish brown (10YR 3/2) very coarse SAND with granules and fine gravel; 5% silt matrix. |
| 160-396 | 2C | SAND & GRAVEL. |

Core 2: Conversion Parcel

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0-150 | F | *Anthropogenic Mixed Source Fill*
Gravel and cinder. |
| 150-180 | F2 | *Natural Source Fill*
Natural source fill; gleyed. |
| 180-200 | 2BCb | *Outwash*
Brown (10YR 4/3) very coarse SAND; granules and fine pebbles; 5% silt. |

Core 3: Conversion Parcel

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0-26 | Ap | *Anthropogenic Mixed Source Fill*
Topsoil, SANDY LOAM; very abrupt boundary. |
| 26-75 | F1 | Gravel and cinder fill. |
| 75-143 | F2 | Black (10YR 2/1) gravelly sandy loam fill; diesel odor and feel; very abrupt boundary. |
| 143-200 | 2C1 | *Outwash*
Dark grayish brown (10YR 4/2) granules with fine pebbles and few medium pebbles; diesel odor and feel. |
| 200-304 | 2C2 | Very coarse SAND, gravel and fine pebbles; diesel. |
Core 4: Conversion Parcel

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-25</td>
<td>Ap</td>
<td>Anthropogenic Mixed Source Fil Topsoil; very abrupt boundary.</td>
</tr>
<tr>
<td>25-44</td>
<td>F1</td>
<td>Brown gravelly sandy loam fill.</td>
</tr>
<tr>
<td>44-62</td>
<td>F2</td>
<td>Yellowish brown (10YR 5/6) sand and gravel.</td>
</tr>
<tr>
<td>62-90</td>
<td>F3</td>
<td>Cinder.</td>
</tr>
<tr>
<td>90-132</td>
<td>2Bwb</td>
<td>Surficial Deposits Brown – dark brown (2.5YR 4/4 - 4%) diamicton with SILTY CLAY LOAM matrix; leached; very abrupt boundary.</td>
</tr>
<tr>
<td>132-164</td>
<td>2C1</td>
<td>Outwash Brown (10YR 4/3) coarse – very coarse granular SAND with fine pebbles; unleached; abrupt boundary.</td>
</tr>
<tr>
<td>164-175</td>
<td>2Bb</td>
<td>Sticky SANDY LOAM; sand is very coarse; granules with fine pebbles; unleached.</td>
</tr>
<tr>
<td>175-221</td>
<td>2C2</td>
<td>Brown – pale brown (10YR 5/3 – 6/3) coarse and very coarse SAND with granules and fine pebbles; unleached.</td>
</tr>
<tr>
<td>221-224</td>
<td>2C3</td>
<td>Brown (10YR 5/3) SILT LOAM; laminated; carbonate on laminae planes; unleached; very abrupt boundary.</td>
</tr>
<tr>
<td>224-302</td>
<td>2C4</td>
<td>Brown – grayish brown (10YR 5/3 – 6/3) coarse and very coarse SAND with granules and gravel; unleached.</td>
</tr>
</tbody>
</table>

Core 5: Conversion Parcel

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-13</td>
<td>Ap</td>
<td>Natural Source Fill Topsoil.</td>
</tr>
<tr>
<td>13-110</td>
<td>F1</td>
<td>Cinder and gravel.</td>
</tr>
<tr>
<td>110-145</td>
<td>F2</td>
<td>Brick, cinder and soil.</td>
</tr>
<tr>
<td>145-160</td>
<td>F3</td>
<td>Very dark gray (10YR 3/1) SILTY CLAY LOAM with gravel; very abrupt boundary.</td>
</tr>
<tr>
<td>160-166</td>
<td>F4</td>
<td>Dark yellowish brown (10YR 4/4) SILTY CLAY LOAM diamicton.</td>
</tr>
<tr>
<td>166-170</td>
<td>F5</td>
<td>Dark SILTY CLAY LOAM.</td>
</tr>
<tr>
<td>170-177</td>
<td>F6</td>
<td>Dark yellowish brown diamicton.</td>
</tr>
<tr>
<td>177-200</td>
<td>F7</td>
<td>Brown (10Yr 4/3) SILTY CLAY with floating sand.</td>
</tr>
<tr>
<td>200-260</td>
<td>F8</td>
<td>Very dark gray (10Yr 3/1) SILTY CLAY LOAM with loamy sand; dark yellowish brown – brown (10YR 4/4 – 4/3) SILTY CLAY LOAM at 255 cm.</td>
</tr>
<tr>
<td>260-364</td>
<td>F9</td>
<td>Brown, dark yellowish brown and dark gray bedded SILTY CLAY LOAM.</td>
</tr>
<tr>
<td>364-380</td>
<td>F10</td>
<td>Dark brown (7.5YR 4/3) SILTY CLAY LOAM with 10-15% sand.</td>
</tr>
<tr>
<td>380-418</td>
<td>F11</td>
<td>Gleyed SILTY CLAY LOAM.</td>
</tr>
<tr>
<td>418-420</td>
<td>F12</td>
<td>Coarse SAND bed.</td>
</tr>
<tr>
<td>420-450</td>
<td>F13</td>
<td>Very dark grayish brown (10YR 3/2) SILTY CLAY LOAM diamicton.</td>
</tr>
</tbody>
</table>
Core 6: Conversion Parcel

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0-122 | F1 | *Anthropogenic Mixed Source Fill*
Gravel fill. |
| 122-143 | F2 | Brick and sand fill; very abrupt boundary. |
| 143-304 | 2C | *Outwash*
Yellowish brown (10YR 5/4) very coarse SAND, granules, pebbles. |

Core 7: Conversion Parcel

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0-24 | Ap | *Anthropogenic Mixed Source Fill*
Topsoil. |
| 24-44 | F1 | Yellowish brown (10Yr 5/4) SILTY CLAY LOAM; matrix-supported gravel. |
| 44-130 | F2 | Cinder; very abrupt boundary. |
| 130-150 | 2Bb | *Surficial Deposits*
Brown – dark brown (7.5YR 4/4 – ½) heavy SILTY CLAY LOAM diamict; clear boundary. |
| 150-180 | 2BCb | *Outwash*

Core 8: Conversion Parcel

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0-22 | Ap | *Anthropogenic Mixed Source Fill*
Topsoil. |
| 22-122 | F1 | Cinder; diesel below 50cm. |
| 122-200 | F2 | Slag, cinder and brick fragments. |
| 200-240 | 2C1 | *Outwash*
Brown – dark yellowish brown (10YR 4/3 – 4/4) coarse SAND with very coarse sand mode; granules and few fine pebbles; trace of silt; clear boundary. |
| 240-254 | 2C2 | Brown (10YR 5/4) coarse and very coarse SAND with few granules and fine pebbles; abrupt boundary. |
| 254-268 | 2C3 | Olive brown (7.5Y 4/3) weathered bedrock clast |
| 268-304 | 2C4 | Brown (10YR 4/3) very coarse SAND and granules; 5% silt and clay. |
Core 9: Conversion Parcel

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0-18 | Ap | *Anthropogenic Mixed Source Fill*
Gravel and topsoil. |
| 18-54 | F1 | Cinder. |
| 54-71 | F2 | Black and very dark gray silt loam diamicton fill; very abrupt boundary. |
| 71-76 | F3 | Gravel. |
| 76-154 | F4 | Natural source silty clay loam diamicton fill; layered; abrupt boundary. |
| 154-163 | 2ACb | *Outwash*
Black – very dark gray (10YR 2/1 – 3/1) silty clay diamicton; clear boundary. |
| 163-290 | 2BCb | Dark grayish brown (10YR 4/2) heavy SILTY CLAY LOAM diamicton; weak pedo-structure; fill. |
| 290-380 | 2C | Very dark grayish brown (10YR 3/2) SILTY CLAY diamicton; 25-30% gravel; refusal at 380 cm. |

Core 10: Conversion Parcel

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0-168 | F | *Anthropogenic Mixed Source Fill*
Fill; refusal. |

Core 11: Conversion Parcel

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0-20 | Ap | *Anthropogenic Mixed Source Fill*
Topsoil. |
| 20-25 | F3 | Yellowish brown silt fill. |
| 25-55 | F2 | Cinder and gravel. |
| 55-63 | AC | Gravel lag. |
| 63-100 | 2BC | *Outwash*
Brown (10YR 4/3) loamy coarse and very coarse SAND with granules and fine pebbles. |
| 100-155 | 2C1 | Yellowish brown (10YR 5/4) medium SAND; cobble; clear boundary. |

Core 12: Conversion Parcel

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0-23 | Ap | *Anthropogenic Mixed Source Fill*
Topsoil; platy SILTY CLAY LOAM; very abrupt boundary. |
| 23-66 | F1 | Cinder fill. |
| 66-131 | F2 | Silty clay diamicton fill; very abrupt boundary. |
| 131-142 | 2C1 | *Surficial Deposits*
Dark yellowish brown (10YR YR ¾) SILTY CLAY diamicton; weak pedo-structure. |
| 142-213 | 2C2 | Yellowish brown (10YR 5/4) very coarse SAND with granules, gravel, and fine pebbles. |
Core 13: Conversion Parcel

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-168</td>
<td>F</td>
<td>Anthropogenic Mixed Source Fill
Fill; refusal at 168.</td>
</tr>
</tbody>
</table>

Core 14: Conversion Parcel

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-58</td>
<td>F1</td>
<td>Anthropogenic Mixed Source Fill
Natural source fill; very abrupt boundary.</td>
</tr>
<tr>
<td>58-73</td>
<td>Ap/F</td>
<td>Very dark gray (10YR 3/1) gravelly SANDY LOAM; few lighter silt soil inclusions; very abrupt boundary.</td>
</tr>
<tr>
<td>73-213</td>
<td>2C</td>
<td>Outwash
Brown (10YR 5/3) granules with very coarse sand and few fine pebbles.</td>
</tr>
</tbody>
</table>

Core 15: Replacement Parcel

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-122</td>
<td>F</td>
<td>Anthropogenic Mixed Source Fill
Natural source fill; gleyed below 94 cm; ceramic plate fragment.</td>
</tr>
<tr>
<td>122-213</td>
<td>F</td>
<td>Dark colored hydric, natural source fill with gravel; glass.</td>
</tr>
<tr>
<td>213-326</td>
<td>F</td>
<td>Cinder; layered fill; very abrupt boundary.</td>
</tr>
<tr>
<td>326-370</td>
<td>2Cg1</td>
<td>Till
Dark greenish gray (2.5Y 4/1 - 5/1) SILT LOAM; 2% sand; matrix-supported pebble; till.</td>
</tr>
<tr>
<td>370-496</td>
<td>2Cg2</td>
<td>Dark gray (N4/) silty clay loam diamicton.</td>
</tr>
</tbody>
</table>

Core 16: Replacement Parcel

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-302</td>
<td>F</td>
<td>Anthropogenic Mixed Source Fill
Coarse and very coarse sand with granules and few fine pebbles; brick fragments; cement.</td>
</tr>
</tbody>
</table>

Core 17: Replacement Parcel

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-122</td>
<td>F</td>
<td>Anthropogenic Mixed Source Fill
Fill; natural source with fine cinder, brick fragments and glass.</td>
</tr>
<tr>
<td>122-213</td>
<td>F</td>
<td>Natural source and cinder fill.</td>
</tr>
<tr>
<td>213-396</td>
<td>F</td>
<td>Fill.</td>
</tr>
</tbody>
</table>
Core 18: Replacement Parcel

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0-122 | F | *Anthropogenic Mixed Source Fill*
Fill: sand, cinder, natural source material mixed with sand. |
| 122-218 | F | Fill: gravel, cinder; very abrupt boundary. |
| 218-234 | 2R1 | *Bedrock*
Light brownish gray (2.5Y 6/2) weathered siltstone; very thin laminated. |
| 234-280 | 2R2 | Light olive brown (2.5Y 5/3) weathered siltstone; laminated; refusal at 280 cm. |

Core 19: Replacement Parcel

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0-45 | F1 | *Anthropogenic Mixed Source Fill*
Natural source fill with gravel over cinder. |
| 45-122 | F2 | Cinder. |
| 122-213 | F3 | Cinder. |
| 213-300 | F4 | Cinder; few pieces of glazed plate fragments. |
| 300-396 | F5 | Cinder, burned material, glass. |
| 396-488 | F6 | Fill, cinder; very low recovers (<10 cm); loose with possible voids |